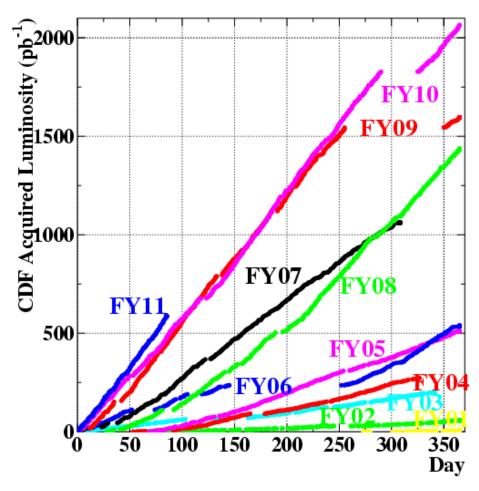
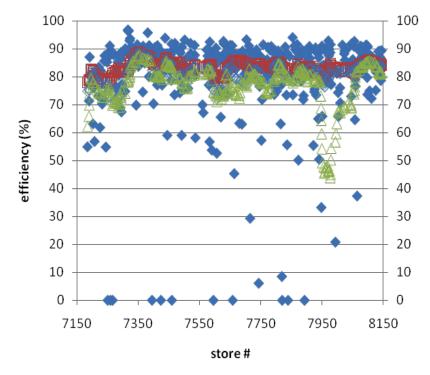


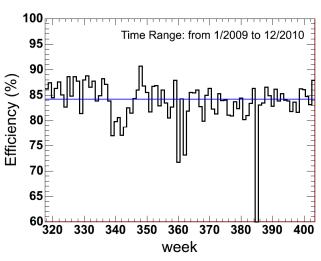
CDF 2010 performance and physics highlights


Rob Roser & Giovanni Punzi CDF International Finance Committee Jan 10, 2011

A Luminous Year

FY 2010 integrated luminosity delivered 2.5 fb⁻¹ of which CDF recorded 2.1 fb⁻¹ to tape.


Run II total 9.5 fb⁻¹ delivered at end of FY10. *Today* >10 fb⁻¹


CDF Data Taking Efficiency in 2010

integrated luminosity (1/fb)								
	Run II		FY09		FY10			
delivered	9.5		1.8		2.5			
recorded	7.9	83%	1.6	85%	2.1	84%		
good	7.5	79 %	1.5	82%	2.0	82 %		
good w. silicon	7.2	76 %	1.5	80%	2.0	80%		

Keeping it high!

Results come from hard work

- Stable efficiency does not mean the ship sails by itself
- Lots of regular maintenance work

A sample list of jobs (5 months: February to June):

27 controlled accesses (~1.4/week), mostly opportunistic:

- ▶ Silicon: replaced 2 power supplies and 2 FIB boards; reconfigured 1 FIB and 1 power supply, investigated and debugged some problematic ladders;
 - SMX: replaced 1 power supply.
- ▶ Calorimeter: replaced 3 plug HV modules, 1 WCAL CPU card and 1 CAFE card, reset or checked a couple of Pisa Boxes, fixed WCAL02 power supply.
- ▶ COT: replaced 4 power-supplies and 1 TDC board, reseated 2 repeater cards, repaired the remote reset cable for a power supply, installed a remote power-cycling box.
 - Muons: replaced 1 BMU power supply and 4 BSU/1 TSU CCU modules, work on CMX HV system.
 - Infrastructure: replaced 1 vacuum pump.
 - Tested safety systems.

Summer shutdown

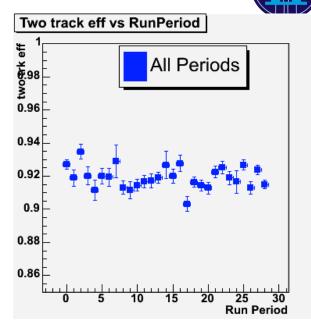
- 4 weeks: 7/18 to 8/21
- Maintenance/preventive maintenance
 - COT routine high voltage repairs both ends
 - fixed low voltage short which had killed a COT octant in SL4.
 - Silicon det. junction cards re-seating: recovered 2 ladders.
 - Silicon power supply maintenance and light level measurements
 - Front end crates and rack protection preventive maintenance
 - "As founds" of the low betas and the east beam pipe plug to toroid
 - Maintenance, calibration, testing and certification of the hall life safety system
 - Inspection of the fall protection systems
 - Replacement of online database machine and updates of servers' OS
 - Preventive maintenance of:
 - motor generators, diesel generator, UPSs, APACS (cryo control system)

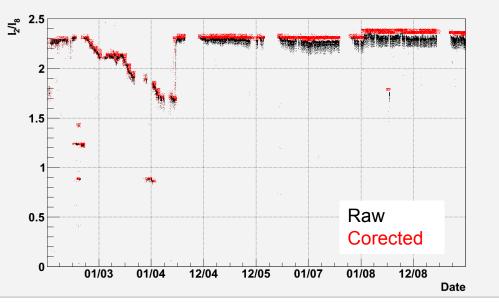
Improvements

- The trigger upgrades allow to cope well with the larger luminosity (more than x30 since the start of run II)
- Completed the GigaFitter upgrade: driving SVT since
 Feb. 19
 - Consolidated boards, greater speed, and allows greater
 flexibility and increase in acceptance
- Silicon Monitoring improved adjust parameters over time to keep optimal performance

Looking at the future: Long-term detector stability

- We have been operating under the guidance of a detector vulnerability study performed in 2007 using outside "consultants".
- A new Tracker Review was held on 6/7/2010 organized by PPD Head Mike Lindgren and Tevatron Spokes.
- Dan Green chaired committee other members include Steve Worm(Rutherford Lab), Rainer Wallny (UCLA), Marcel Demarteau (FNAL), Alan Bross (FNAL)
- Each Collaboration Gave 3 talks
 - Overview of the Experiment
 - Status of Silicon Detector
 - Status of outer tracker

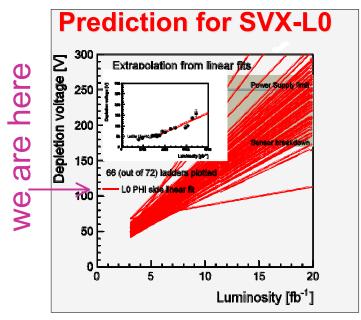


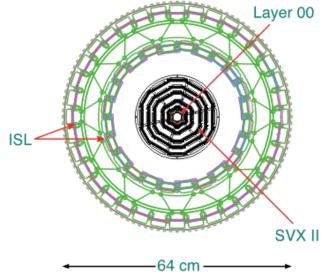

COT longevity

- Tracking efficiency in Z events stable over time.

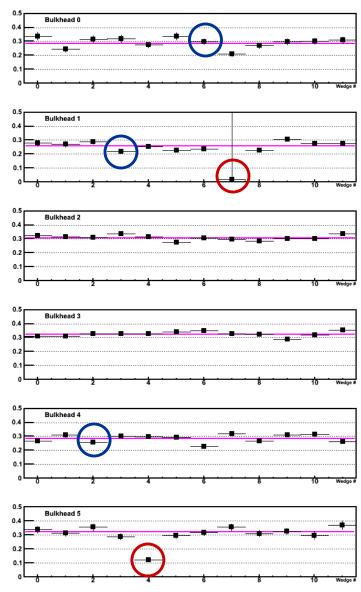
• COT is doing very well (as most of the detector)

- No issues expected from radiation dose in COT materials up to ~20 fb⁻¹.
- No evidence of wire aging or gain loss after adding O₂ and improving the gas recirculating system.
- Possible issues:
 - shortage of high voltage modules.
- Possible improvements:
 - expansion of the HV system to provide more current.



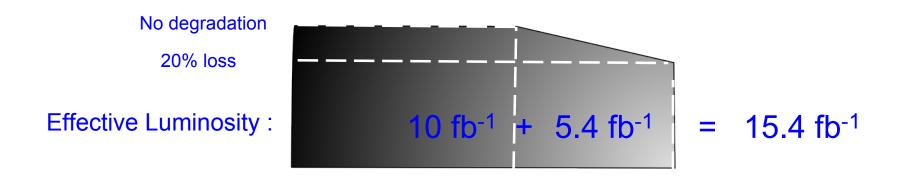


Most significant detector concerns


- 1. Accumulated radiation damage to Layer-0 of the SVX may prevent us to fully deplete silicon.
 - Loss in efficiency Loss in b-tag -Lost Higgs efficiency
 - ACTION: EVALUATED IMPACT ON HIGGS SENSITIVITY
- 2. Radiation Damage to digital optical transmitters (DOIM) may prevent reading out some parts of the detector
 - ACTION: STUDIED IN MORE DETAIL AND PLANNED A FIX

Issue #1: extreme scenario: Layer-0 unusable

- We need to evaluate how well we can perform b-tagging with a deteriorated L0
- -We do this on REAL DATA, using a benriched jet sample tagged by a lepton
- We currently have 3 damaged SVX wedges where L0 is dead since long.
- -Plot at right: **b-tag efficiency** as a function of the SVX wedge the jet is hitting. (Separate evaluation of b-tag errors shows no statistically significant effect)
- -Red circles: completely dead wedges.
- -Blue circles: Layer-0 dead
- Line is fit to efficiencies for wedges by bulkhead, excluding damaged wedges.
- -Even complete *loss* of L0 barely noticeable estimate a 10% effect.



Effects on CDF Higgs sensitivity

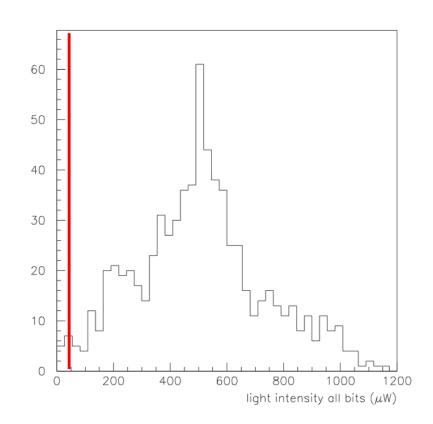
- No degradation in first 10 fb⁻¹ of acquired data
 Slow degradation in single b-jet tagging efficiency toward 10%
 - Implies 20% loss for pairs of tagged jets

Overall sensitivity loss

at $m_H = 115 \text{ GeV} : 2\%$

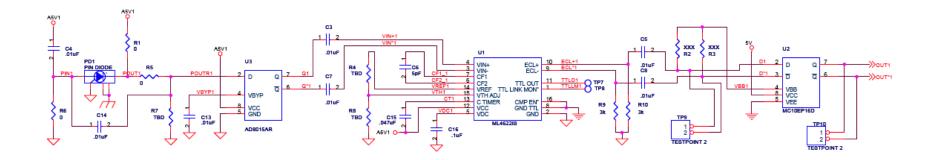
at $m_H = 135 \text{ GeV} : < 1\%$

at $m_H = 160 \text{ GeV} : ~0\%$


10 fb⁻¹ 16 fb⁻¹

Issue #2: Decline of Digital Optical transmitters

- •They carry silicon detector digitized data to the readout system.
- •We recently measured the light output of 1/4 of the channels in the SVX detector.
- •Distribution of light output for all measured bits shows most are currently well above the threshold (red line), but we found a 25% decline over 7 fb⁻¹
- -A few may be in danger of falling below threshold, preventing data readout for the corresponding portion of the SVX



Remedy

- We don't want to take any chances and have prepared a backup solution
- •A new light-amplified board ("Bit Booster Board") with more sensitive light receivers (down to \sim 15 μ W).
- The BBB will sit in the empty slots of current FTM crates, receive light from the TX's, treat each bit separately for amplification or attenuation, and re-emit light at levels appropriate to our current RX's.
- •With this board we are confident on no loss of ladders until well over 20fb⁻¹ (we actually expect to *recover* a few weak ones, gaining back some efficiency)

- Calorimeters, ToF, Muon systems: no action to be taken.
- Luminosity and loss monitors:
 - may need another round of replacing PMTs.
- Mechanical infrastructure:
 - the solenoid and cryo system are running smoothly;
 - one or more of the older chillers may need to be rebuilt.
- Computer infrastructure:
 - expected more or less painful to solve issues due to hardware/software incompatibility as the older machines have to be replaced or the support of software products is discontinued.

Data Analysis

- Achieved great success in keeping up with data taking
 - Winter 2009, 2 to 3/fb (not as much new data as we had hoped).
 - Winter 2010 up to 5.4/fb (+many new analyses)
 - 35 NEW results

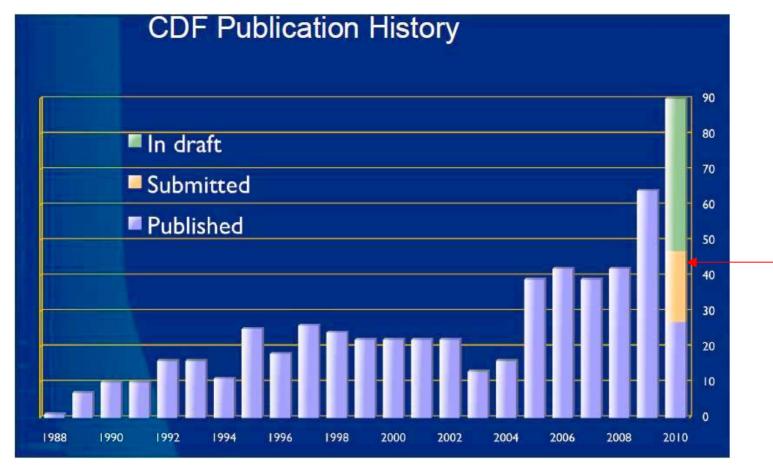
http://www-cdf.fnal.gov/physics/W10CDFResults.html

- Summer 2010 up to 6.7/fb
 - 37 NEW results! Big showing at ICHEP (>40 Tev talks)

http://www-cdf.fnal.gov/physics/S10CDFResults.html

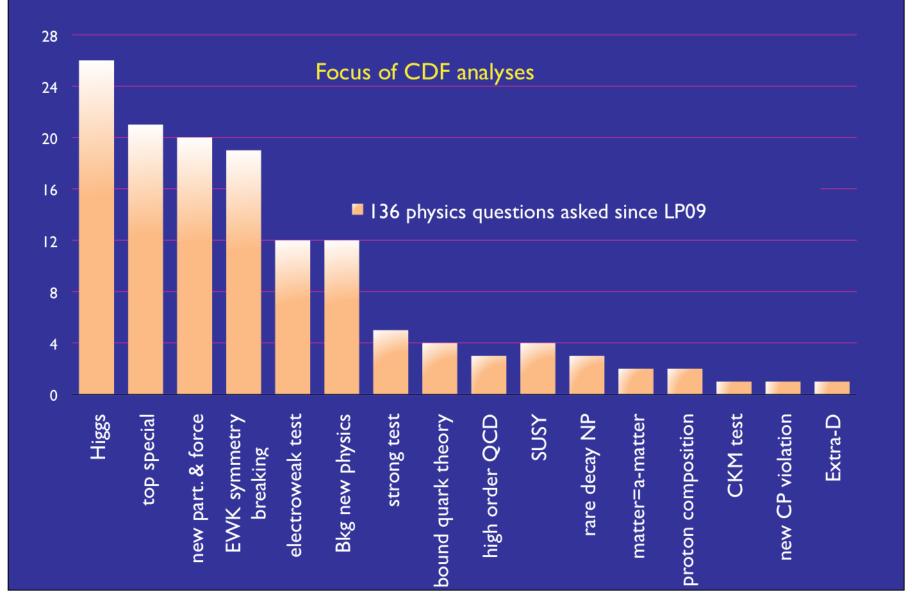
- Number of channels used in Higgs analysis keeps increasing and analyses keep being improved.
 - Sensitivity keeps improving faster than Sqrt(L)
- For the first time we managed to re-process past data.
 - We now have better understanding and better reconstruction software
 a wish list of improvements had been growing
 - Now is the time to go back and apply improvements to past data
 - Also makes for greater uniformity
 - Achieved re-production and re-ntupling of ~1/3 of past data
 - Expect improved b-tagging next year for Higgs (and other) results!
 - Preparing further improvements in ntuples
 - -> Details in the computing talk by Ray Culbertson

Our Current Management Team


- Physics Coordinator
 - (Kevin Pitts)
- Detector Operations Heads
 - Massimo Casarsa)
 - Phil Schlabach
- Offline Heads
 - Rick St. Denis
 - Ray Culbertson
- TDWG
 - Heather Gerberich
 - Simone Donati

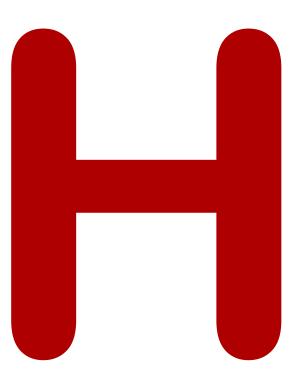
- Higgs
 - Ben Kilminster
 - Eric James
- Top
 - Tom Schwarz
 - Fabrizio Margaroli
- EXOTICS
 - Simona Rolli
 - Oscar Gonzalez Lopez
- EWK
 - Mark Lancaster
 - Larry Nodulman
- Flavor
 - Diego Tonelli
 - Robert Harr
- QCD
 - Mary Convery
 - Christina Mesropian

CDF publication output

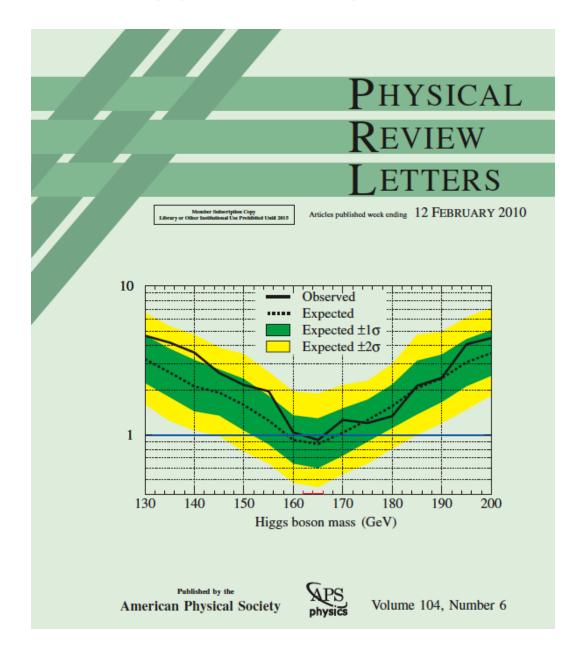


Total 43 papers published in CY 2010 (CDF+D0 account for ~50% HEP paper production in US)

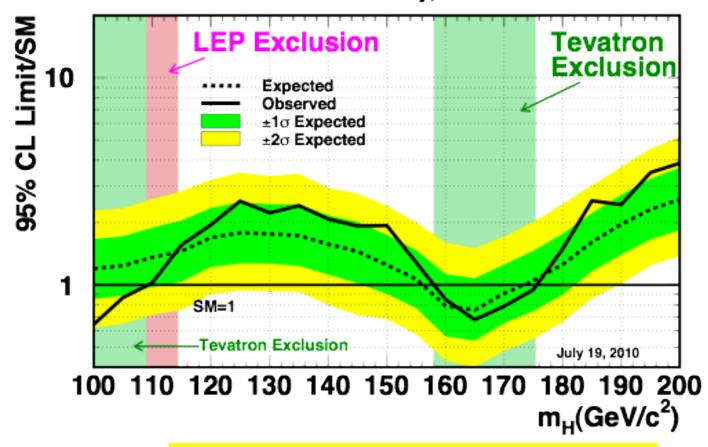
CDF results by topic



Some Physics Highlights

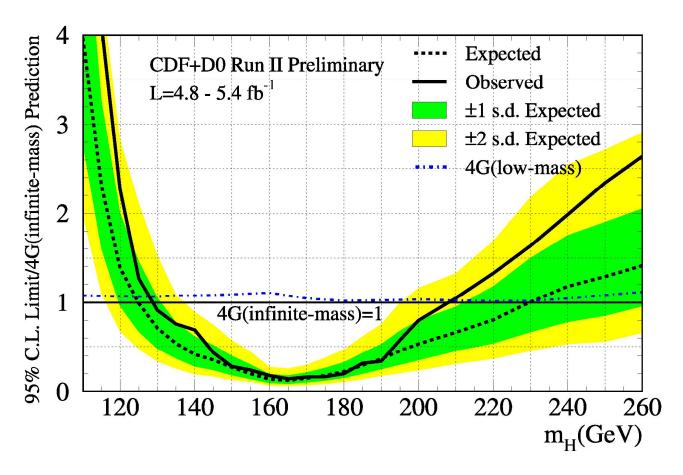


The Higgs Era begins in 2010



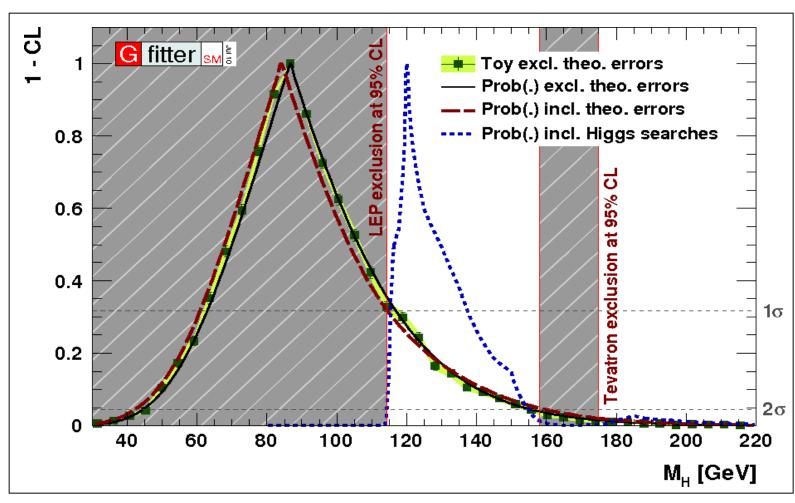
ICHEP 2010

Tevatron Run II Preliminary, L ≤ 6.7 fb⁻¹

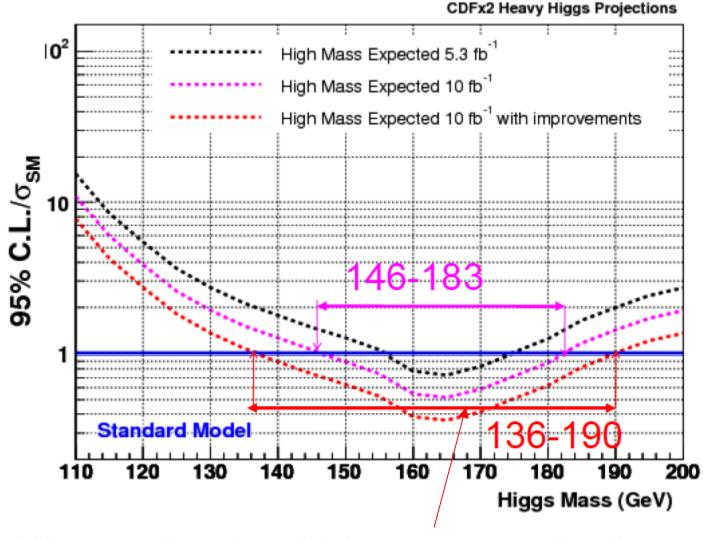


Exclude 158-175 at 95%CL

The Higgs, in a 4th gen. scenario



- Fourth sequential quark family ⇒enhance gg->H by ~9x
- 130 <m_H < 210 GeV already excluded at 95%CL!
 (but 4th generation tends to push m_H to higher masses)

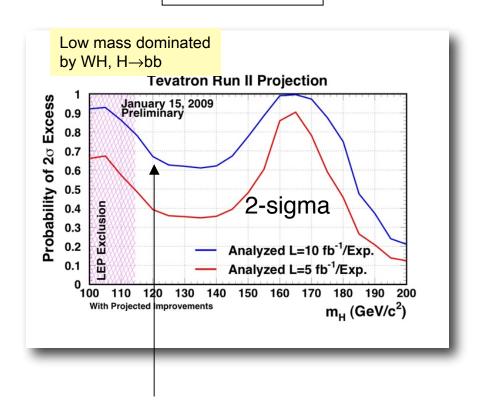


The high-mass region is now pretty strongly disfavored

Fast progress: How it will look like next year (Hi-mass search only)

Wipe out the whole high-mass range, by direct search!

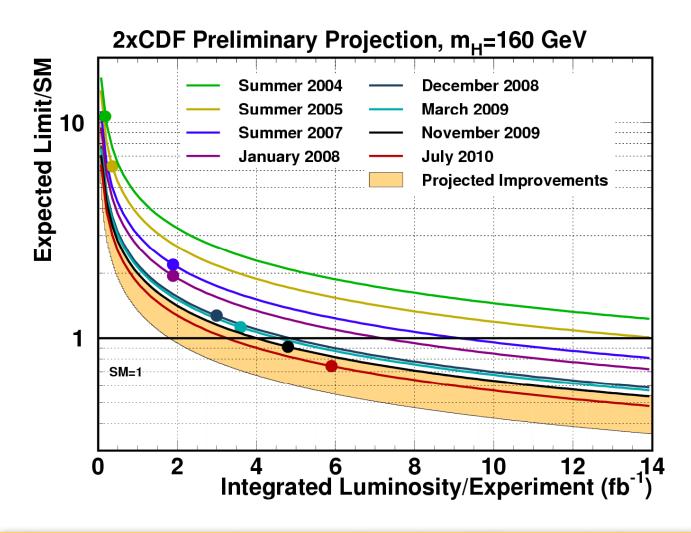
Higgs Outlook for FY11


(combined Hi+Low analyses, with improvements)

Exclusion

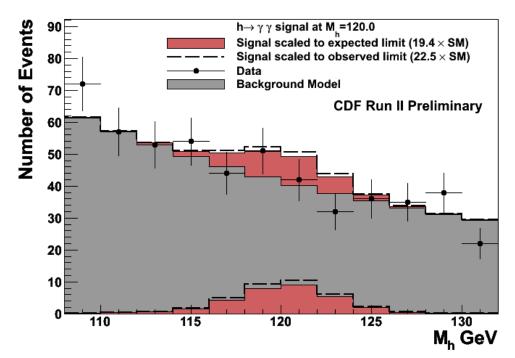
If there is no low-mass Higgs a 95% exclusion is very likely

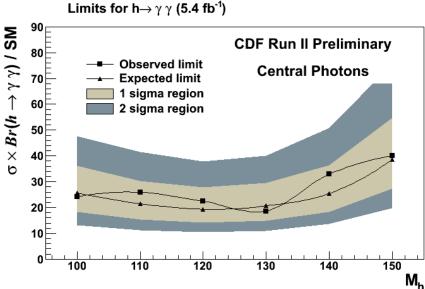
Discovery



If there is, a 2σ excess is very likely to appear

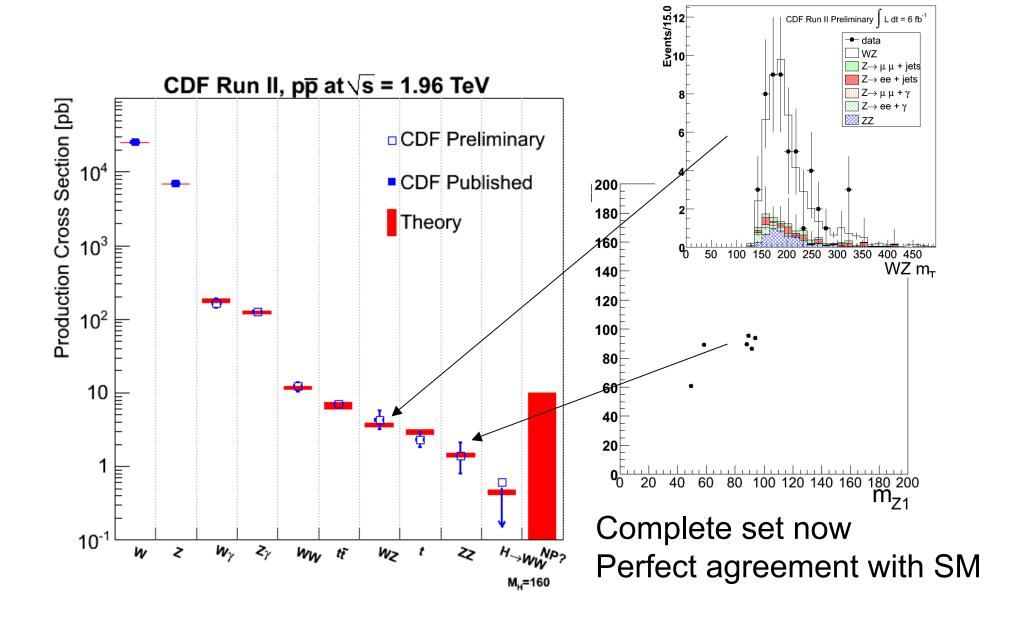
Kept improving sensitivity in 2010


Orange band = expected improvement factors from 2007 analyses [x1.5 and x2.25]


First dedicated H→γγ search

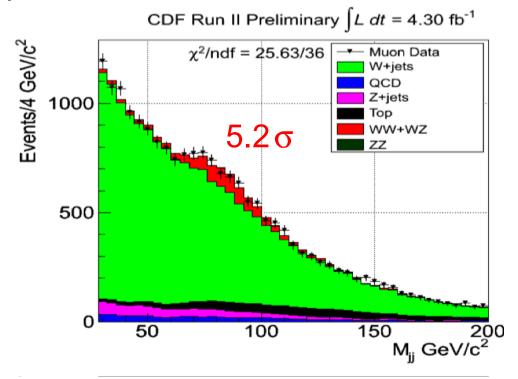
- H→γγ with 5.4 fb⁻¹
 - Excellent di-photon mass resolution makes resonances detectable

Still far from SM


Results at mH = 120 GeV: 95%CL Limits/SM

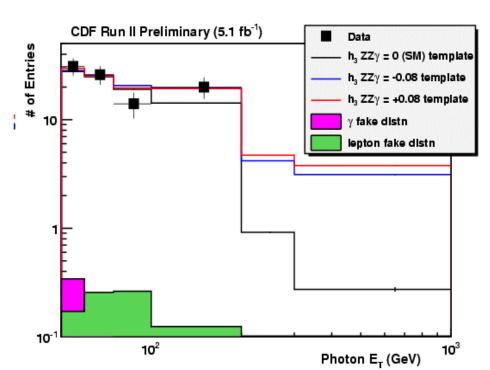
Analysis	Lum (fb ⁻¹)	Exp. Limit	Obs. Limi t
$H \rightarrow \gamma \gamma$	5.4	19.4	22.5

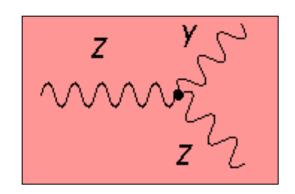
The last diboson: ZZ at >5σ

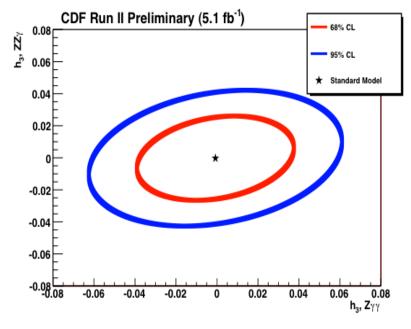


Ability to observe diboson mass peaks in jet pairs

WW/WZ lepton + Jets observation

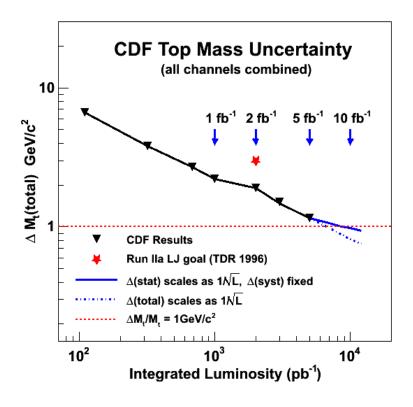

$$\sigma$$
 = 18.1 ± 3.3_{stat} ± 2.5_{sys}
 σ = 16.5 +3.3-3.0 ± 3.5_{sys}
[SM = 15.1 ± 0.9 pb]

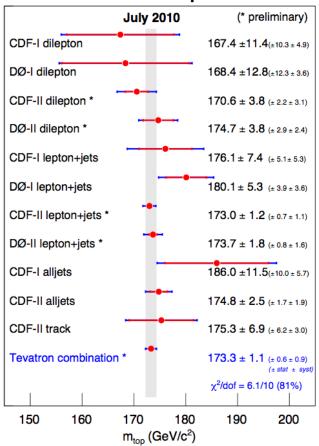



Anomalous Di-Bosons

- Zγ with 5.1 fb⁻¹
- Direct coupling would be anomalous
 - SM contribution from ISR and FSR

Limits (@ 1.2 TeV) : $|h_3| < 0.037$, $|h_4| < 0.0017$


Already significantly better than LEP & will improve (~ factor 2) with Z -> $vv\gamma$


Top Quark Mass (combined)

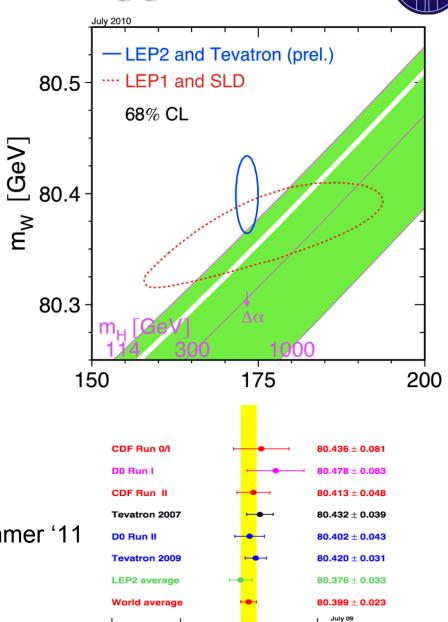
- **July 2010 Tevatron Combination** includes 11 results
- Largest systematic uncertainty is Jet Energy Scale (~0.46 GeV)
- Good agreement across both experiments and channels
- Single Experiment uncertainty of 1 GeV achievable in Run II:

Mass of the Top Quark

up to 5.6 fb⁻¹
$$M_t = 173.3 \pm 1.1 \text{ GeV}$$

 $\Delta M / M \sim 0.6 \%$

Impact on indirect Higgs Mass



 Higgs Mass bounds from Electroweak Fit:

Мн < 158 GeV @ 95% CL Мн = 89⁺³⁵-26 GeV

- SM Higgs Mass constraint now driven by $\Delta m_{_{W}}$
 - $\Delta m_W \sim 0.006 \text{ x } \delta m_{top} \sim 7 \text{ MeV for equal}$ weights in Higgs limits

Now 23 MeV - Expect significant update Summer '11

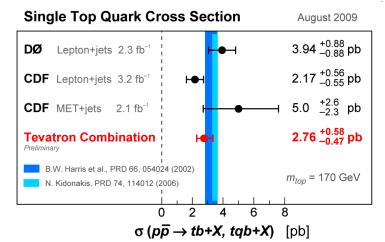
80.2

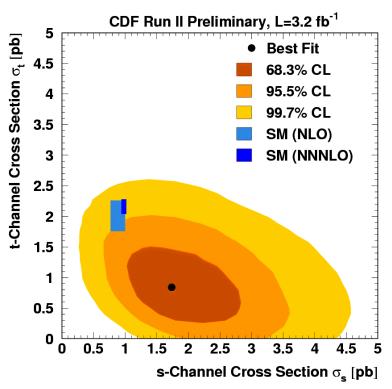
80.4

m_w (GeV)

80.6

Single Top Cross section and |Vtb|

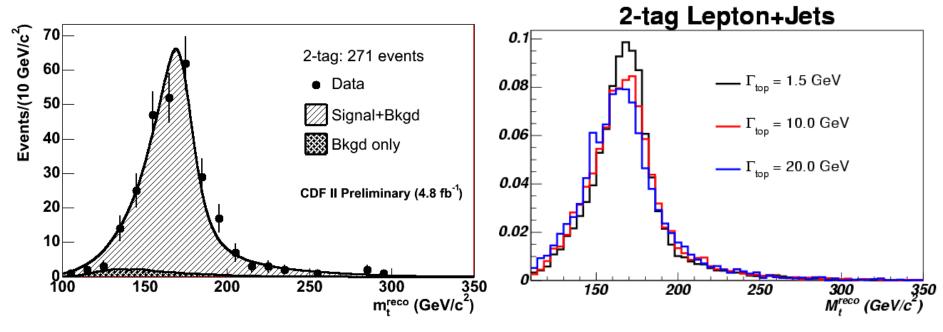



Good precisionTevatron combined result:

$$\sigma_{s+t}$$
=2.76^{+0.58}_{-0.47} pb
|V_{tb}|= 0.88±0.07 (>0.77 @95% CL)

compatible with Standard Model In all channels

- Separate s- and t-channel:
 - Good overall agreement with Standard Model
 - ~2σ effect in CDF result
 Not explained by recent
 theory progress in t-channel
 signal MC (Campbell et al)



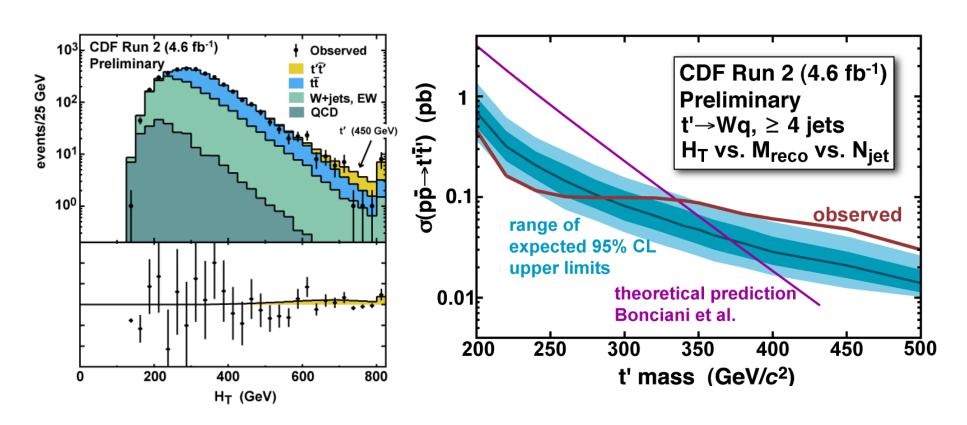
Direct measurement of top width

- CDF top samples so clean allow direct width measurement
 - Simultaneous constraint of jet energy scale using W jets

$$\Gamma_{\rm t}$$
<7.6 GeV (95%CL),
0.3< $\Gamma_{\rm t}$ <4.4 GeV (68%CL interval)

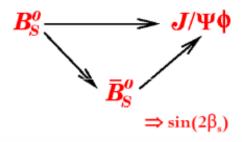
NLO: $\Gamma(t->Wb) = 1.26 \text{ GeV}, m_t = 170 \text{ GeV}$

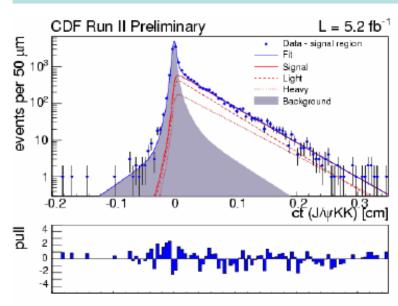
Big table of Top Properties Measurements


Property	Run II Measurement	SM prediction	Lumi (fb ⁻¹)
m _t	Tevatron: 173.3 ± 1.1 GeV		4.3-5.6
σ_{ttbar} (m _t =172.5 GeV) σ_{ttbar} (m _t =172.5 GeV)	CDF: 7.50 ± 0.31 (stat) ± 0.34 (syst) ± 0.15 (lumi) pb D0: $7.78^{+0.77}_{-0.64}$ pb	7.46 +0.48 _{-0.67} pb / 6.41 +0.51 _{-0.42} pb	4.5 1
$\sigma_{singletop}$ (@m _t =170 GeV)	Tevatron: 2.76 +0.58 -0.47 (stat+syst)	2.86±0.8 pb	3.2-2.3
$ V_{tb} $	Tevatron: 0.91 ± 0.08 (stat+syst)	1	3.2-2.3
$\sigma(gg->ttbar)/\sigma(qq->ttbar)$	D0: 0.07+0.15-0.07(stat+sys)	0.18	1
m _t - m _{tbar}	D0: 3.8 ± 3.7 GeV CDF -3.3±1.7 GeV	0	1
$\sigma_{\text{ttbar+jets}}$ (@m _t =172.5 GeV)	CDF: 1.6 ± 0.2 (stat) ± 0.5 (syst)	1.79+0.16 -0.31 pb	4.1
СТтор	CDF: 52.5µm @ 95%C.L.	10 ⁻¹⁰ μm	0.3
Top width	D0: Γ_t =2.05 +0.57 -0.52 GeV CDF: Γ_t < 7.6 GeV @ 95%C.L.	1.26 GeV	1
BR(t->Wb)/BR(t->Wq)	CDF: >0.61 @ 95% C.L. D0: 0.97 +0.09 -0.08 (stat+syst)	1	0.2 0.9
W-boson Helicity	CDF: F_0 =0.88 ±0.11 ±0.06 F_+ =-0.15 ± 0.07±0.06 D0: F_0 =0.67±0.08(stat)±0.07 (syst) F_+ =0.02±0.04(stat)±0.03 (syst)	$F_0 = 0.7$ $F_+ = 0$	2 5.4
Charge	CDF: 4e/3 excluded with 87% C.L. D0: 4e/3 excluded at 92% C.L.	2/3	1.5 0.37
Spin correlations	CDF: $\kappa = 0.7 \pm 0.6 \pm 0.3$ (lj) D0: $\kappa = -0.2^{+0.6}$ (stat + syst) (ll)	0.78 _{-0.022} +0.027	5.0 4.2
Charge asymmetry	CDF: 0.16 ± 0.07 % D0: 0.08 ± 0.04 %	0.05 +- 0.015 0.01 + 0.02 -0.01	5.3 4.3

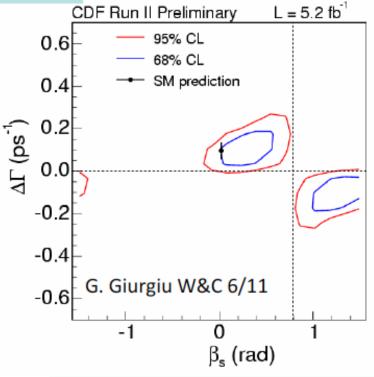
4th generation: t' search

- Search for "heavy top" t' → Wq
 - Leptons + Jets events with 4.6 fb⁻¹
 - Reconstruct mass of t' and search in H_T and m_{t'}
 - M(t') > 335 GeV but tension just above the limit... update soon!


$Sin(2\beta s)$



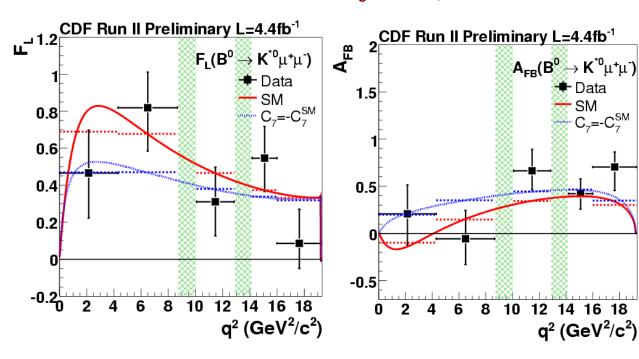
Interference of decays with/without mixing

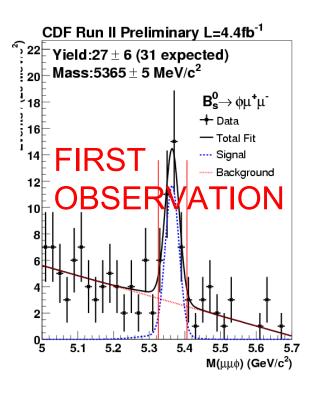

Angular correlations of decay products to separate CPeven/CP-odd components as a function of proper time

Last summer, Tevatron combined result (2.8 fb⁻¹) consistent with SM at 3.4% level (2.1 σ)

 $c\tau_s = 458.7 \pm 7.5 \text{ (stat)} \pm 3.6 \text{ (syst)} \, \mu\text{m}$ $\Delta\Gamma_s = 0.075 \pm 0.035 \text{ (stat)} \pm 0.01 \text{ (syst)} \, \text{ps}^{-1}$ $|A_{||}(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst)}$ $|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst)}$

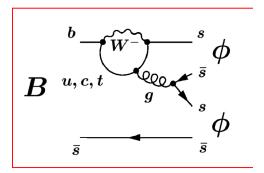
[0.02, 0.52] U [1.08, 1.55] at 68% CL SM consistency 0.8σ (was 1.5σ)


Improved precision - improved agreement with SM



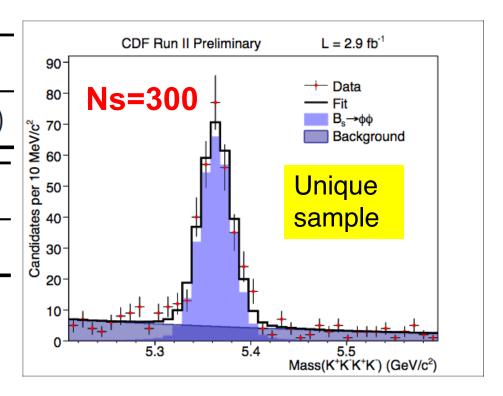
Rare: B → µµX_s

- Rare decays B $\rightarrow \mu\mu X_s$: B⁺ $\rightarrow \mu\mu K^+$, B⁰ $\rightarrow \mu\mu K^{0*}$, B_s $\rightarrow \mu\mu\phi$
 - Measurement of A_{FB} (muons) and $F_L(K^{0*})$
 - FCNC process. Another way to probe for NP anomalies.
 - 4.4 fb-1 consistent (and comparable) with slight anomaly at B factories
 - First Observation of $B_s \rightarrow \mu \mu \phi!$



First measurement of $B_s \rightarrow \phi \phi$ polarization

- B factory charmonium vs. s penguin decays: ccs vs css. Discrepancy observed in sin2β and polarization
- Equivalent B_s test is: $B_s \rightarrow J/\psi \phi(css)$ vs. $B_s \rightarrow \phi \phi$ (sss)
- First step is a polarization analysis.

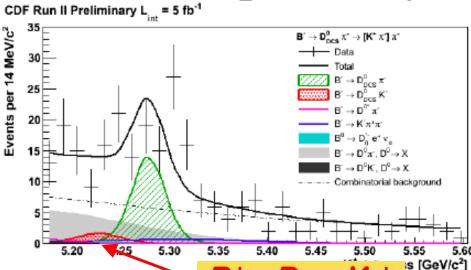

longitudinal
$$(f_{\rm L})$$

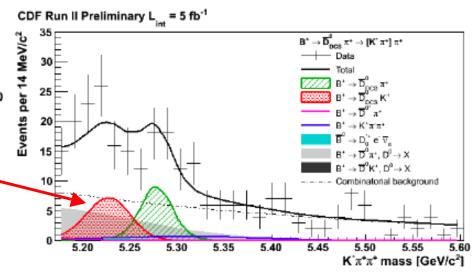
$$0.348 \pm 0.041(\text{stat}) \pm 0.021(\text{syst})$$

transverse $(f_{\rm T})$

 $0.652 \pm 0.041(\text{stat}) \pm 0.021(\text{syst})$

Expected higher f_L: **polarization puzzle is in the Bs too!** Possibility of NP. Next: CPV.

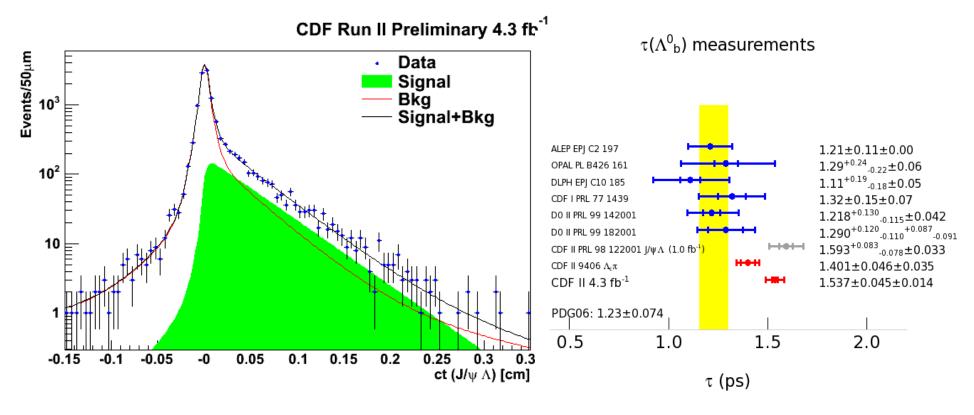



First ADS analysis of B \rightarrow DK (angle γ)

- Color suppress/doubly Cabibbo suppressed modes
- Combined significance (is there anything there?) >5σ

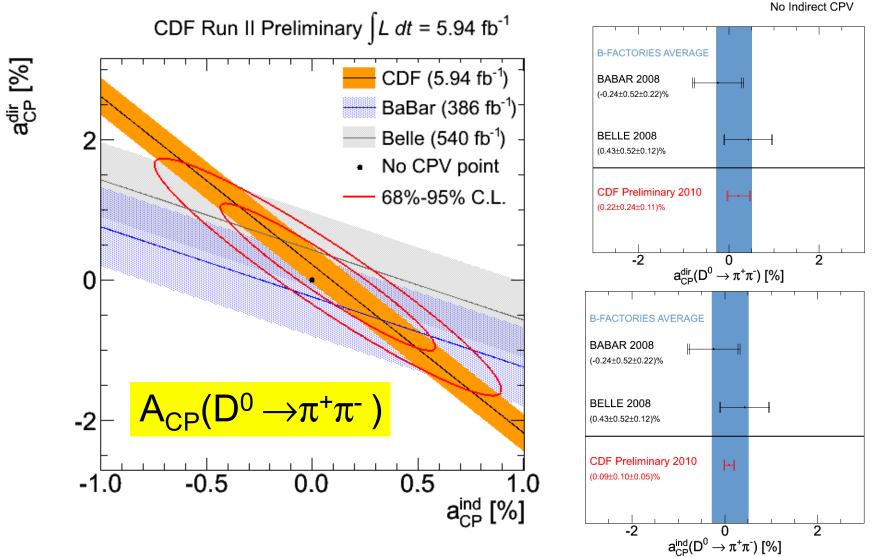
CDF 5 fb⁻¹ result compares to Belle's full statistics

 $R_{ADS}(\pi) = 0.0041 \pm 0.0008(stat) \pm 0.0004(syst)$ $A_{ADS}(\pi) = 0.22 \pm 0.18(stat) \pm 0.06(syst)$ $R_{ADS}(K) = 0.0225 \pm 0.0084(stat) \pm 0.0079(syst)$ $A_{ADS}(K) = -0.63 \pm 0.40(stat) \pm 0.23(syst)$


evidence

World's best B Hadron Lifetimes

- Now better than Y(4S)!
- B hadrons: $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{0^*}$, $\Lambda^0_b \rightarrow J/\psi \Lambda^0$



$$\begin{split} \tau(\mathsf{B}^+)/\tau(\mathsf{B}^0) &= 1.088 \pm 0.009_{\text{stat}} \pm 0.004_{\text{sys}} \\ \tau(\Lambda_{\text{b}})/\tau(\mathsf{B}^0) &= 1.020 \pm 0.030s_{\text{tat}} \pm 0.008_{\text{sys}} \\ \Lambda_{\text{b}} &: 1.537 \pm 0.045_{\text{stat}} \pm 0.014_{\text{sys}} \text{ ps} \end{split}$$

Precision CP asymmetry in Charm

<u>Unprecedented precision</u> - significant probe for NP! (and no effect seen) Still statistics-limited! And still need to add KK mode.

Very recent: A_{FB}(ttbar)

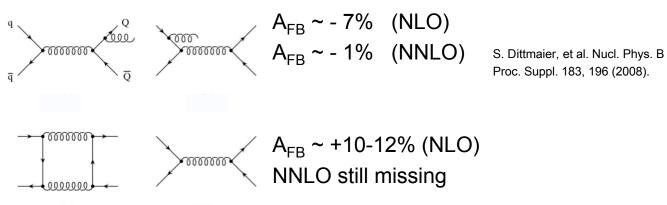
Top Quark A_{FB}

 $\delta y_b \approx 0.034$

 $\delta y_l \approx 0.085$

 $\Delta y_{t\bar{t}} = q \cdot (y_l - y_h)$

 $= y_t - y_{\bar{t}}$

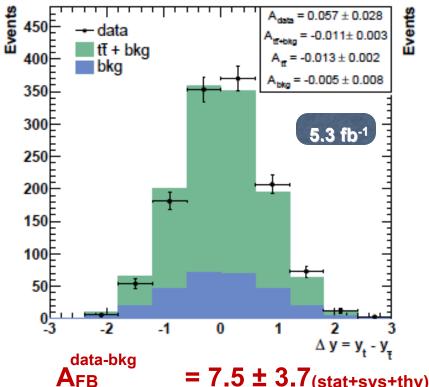

 $\delta \Delta y \approx 0.100$

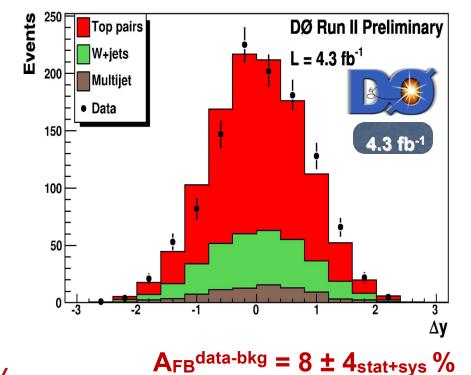
 $\Delta y_{t\bar{t}} = 2 y_t^{t\bar{t}}$

Test of discrete symmetries in strong interactions

$$\mathrm{A_{FB}} = \frac{\mathbf{N_{\Delta Y}} > 0}{\mathbf{N_{\Delta Y}} > 0} + \mathbf{N_{\Delta Y}} < 0}{\mathbf{N_{\Delta Y}} > 0}$$

- at Tevatron (pp), A_{FB} can be reconstructed in lab frame
- NLO QCD predicts small asymmetry A_{FB} ~ 5% in y
 qq → tt top quark preferentially in proton direction


- New physics can modify/enhance A_{FB}
 - Extra heavy gluon octet, W', Z' with anom. couplings
- (Brand-) new CDF result based on 5.3 fb⁻¹ http://arxiv.org/abs/1101.0034
 - $\Delta y (\sim \cos \theta^*_{tt})$ and $M_{ttbar} (\sim Q^2)$ dependence


FNAL Wine and Cheese Seminar 7 January 2011!

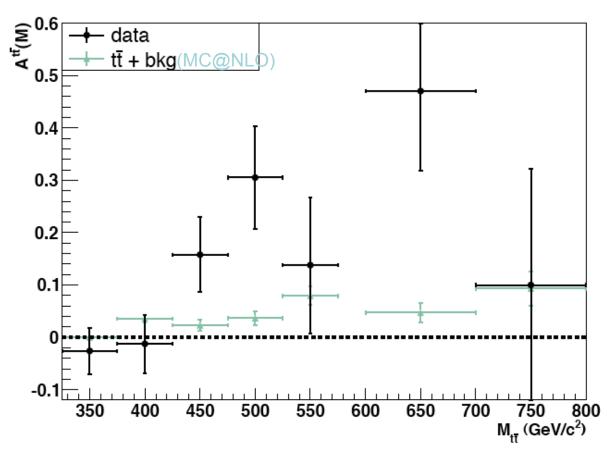
Inclusive Asymmetries in tt-Rest Frame

= $7.5 \pm 3.7_{\text{(stat+sys+thy)}}$ %

 $A_{FB}^{mc@nlo} = 2.4 \pm 0.5 \%$

 $A_{FB}^{mc@nlo} = 1^{+2.0}_{-1.0} \%$

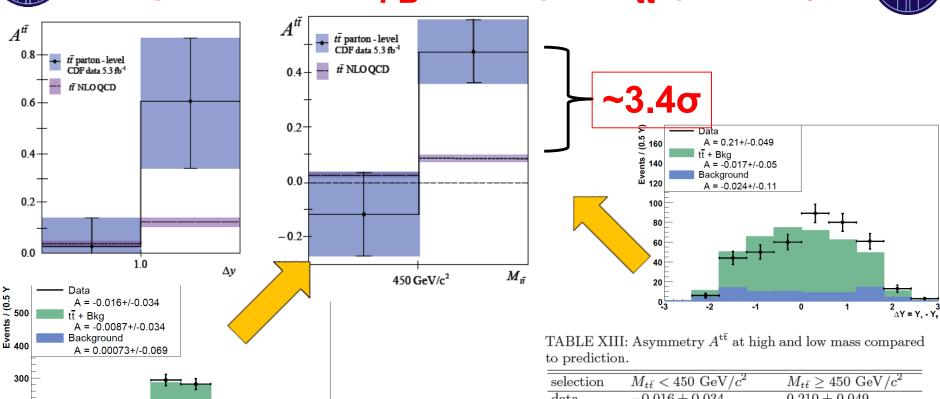
Parton Level: (correcting acceptance, reconstruction, resolution, backgrounds)


A_{FB} =
$$15.8 \pm 7.4_{\text{(stat+sys+thy)}}$$
 % ~ 1.50

M_{tt} dependence

Reconstructed (data) level:

Reconstructed A_{FB} (data) overshoots MC@NLO prediction



200

100

Significant A_{FB} at high M_{tt} (and Δy)

selection	$M_{t\bar{t}} < 450 \text{ GeV}/c^2$	$M_{t\bar{t}} \ge 450 \text{ GeV}/c^2$
data	-0.016 ± 0.034	0.210 ± 0.049
$t\bar{t}$ +bkg	$+0.012 \pm 0.006$	0.030 ± 0.007
(MC@NLO)		
data signal	$-0.022 \pm 0.039 \pm 0.017$	$0.266 \pm 0.053 \pm 0.032$
$t \overline{t}$	$+0.015 \pm 0.006$	0.043 ± 0.009
(MC@NLO)		
data parton	$-0.116 \pm 0.146 \pm 0.047$	$0.475 \pm 0.101 \pm 0.049$
MCFM	$+0.040 \pm 0.006$	0.088 ± 0.013

- cross checks: possible bias from unfolding physics model (Pythia versus Color Octet Model P. Ferrario, G. Rodrigo PRD80 051701 (2009)), reconstruction quality, lepton species, b-tagging/anti-tag cross check, jet multiplicity ...
- Awaiting further theory input (NNLO) -

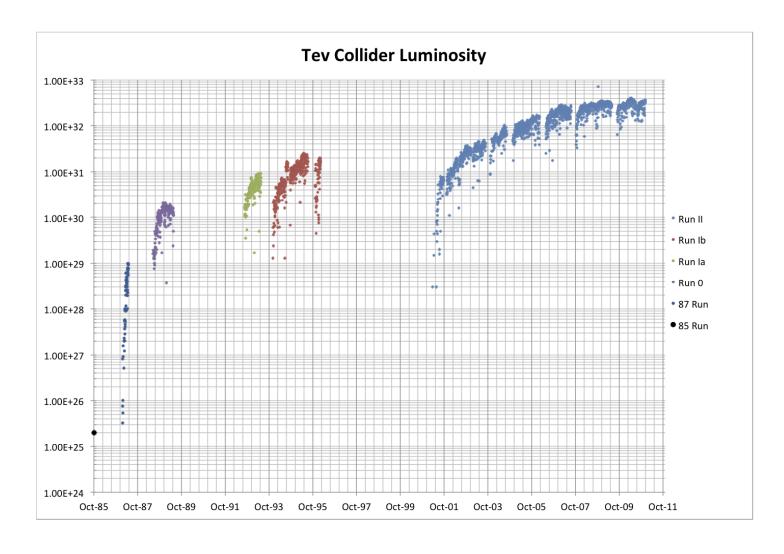
 $^{2}_{\Delta Y} = Y_{1} - Y_{2}^{3}$

Interesting to see how this will evolve

Conclusion

Closing Thoughts

- CDF has had a very successful year
- We are making substantial efforts to capitalize on accumulated experience and sharpen all of our tools for best performance
- With these large datasets we are now stepping into a territory where anything can happen, and we are constantly on the watch for something unexpected.
- Treasures may await those that stay onboard the ship



BACKUP

25 Years of Luminosity

